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Formation of giant waves in sea states with two spectral maxima centered at close wave vectors k0��k /2
in the Fourier plane is numerically simulated using the fully nonlinear model for long-crested water waves �V.
P. Ruban, Phys. Rev. E 71, 055303�R� �2005��. Depending on an angle � between the vectors k0 and �k,
which determines a typical orientation of interference stripes in the physical plane, rogue waves arise having
different spatial structure. If ��arctan�1 /�2�, then typical giant waves are relatively long fragments of essen-
tially two-dimensional �2D� ridges, separated by wide valleys and consisting of alternating oblique crests and
troughs. At nearly perpendicular k0 and �k, the interference minima develop to coherent structures similar to
the dark solitons of the nonlinear Schrodinger equation, and a 2D freak wave looks much as a piece of a
one-dimensional freak wave bounded in the transversal direction by two such dark solitons.
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The problem of extreme ocean waves �known as freak
waves, rogue waves, or killer waves� has attracted much
attention in recent years �see, e.g., the reviews �1,2�,
where different physical mechanisms of the rogue wave
phenomenon are discussed and many related works are
referenced; for some recent developments in this field, see
Refs. �3–17��. With a typical background wave amplitude
A0��0.015, . . . ,0.02��0 �where �0=2� /k0 is a typical wave-
length�, the maximum elevation of a freak wave can reach a
height Ymax�0.06�0, which approaches the limiting Stokes
wave. Profiles of freak waves are very steep, and they
strongly deviate from the sinusoidal shape. In different cir-
cumstances, the giant waves can be caused by different rea-
sons. Accordingly, there are several probable scenarios ex-
plaining formation of these waves. It has been recognized
that one of the most important reasons for freak waves is the
modulational Benjamin-Feir-Zakharov instability taking
place in relatively long and high groups of propagating
waves �18,19�. Efficiency of this mechanism is usually char-
acterized by the so-called Benjamin-Feir index �4�, �BFI�
��0

−2A0l0, where l0 is a typical length of wave groups. For
example, in completely incoherent sea states �low BFI� the
modulational instability is suppressed, and rather rare ap-
pearance of anomalous wave events is basically of a purely
kinematic origin. This limit is well described by the approxi-
mation of noninteracting normal wave modes renormalized
by a weakly nonlinear transformation excluding three-wave
�nonresonant� processes �see, e.g., Refs. �2,5,20� and refer-
ences therein�. Higher values of BFI correspond to more fa-
vorable conditions for the occurrence of freak waves. Non-
linear wave interactions become essential so giant waves
arise in the process of evolution of some coherent structures.
In particular, the limit of infinitely high BFI �a weakly dis-
turbed planar wave as an initial state� has been recently stud-
ied in works �8,9�, and specific zigzag-shaped obliquely ori-
ented wave stripes were found to develop in the nonlinear
stage of the modulational instability, with rogue waves oc-
curring mainly at zigzag turns. That case roughly corre-
sponds to another probable scenario when refraction of swell
in a spatially nonuniform current causes preliminary ampli-
fication of wave height around caustic region �21,22�. A dif-

ferent kind of coherent structures has been recognized re-
cently for purely one-dimensional �1D� waves �planar flows�,
the so-called giant breathers �10�, which are extremely short
and steep envelope solitons, containing just 1–2 waves.

Thus, though BFI is definitely a relevant parameter, but in
some situations it does not completely characterize freak
waves as it takes place, for example, for 1D waves �10–13�
or for long-crested waves in contrast to short-crested waves
�14,15� or in crossing sea states �16,17�. The reason is that
coherent wave structures depend on additional parameters as
well. In the present work, we investigate this question in
more detail for weakly crossing sea states. More specifically,
we consider sea states with two spectral peaks centered at
wave vectors k1,2=k0	�k /2 in the Fourier plane, and we
assume ��k�
 �k0�. Thus, an angle of incidence � between k1
and k2 is small in our study. Such a situation corresponds to
the presence of relatively long and wide wave stripes ob-
liquely oriented to the wave fronts in a range of angles near
the angle � between the vectors �k and k0. We study nu-
merically how the process of rogue wave formation depends
on the angle �. The computations are based on the approxi-
mate theoretical model for long-crested fully nonlinear water
waves developed in Refs. �23,24� and later successfully ap-
plied in Refs. �8,9�. The model is of the first-order accuracy
in a small parameter ���2
1, and it is intermediate be-
tween the exact Eulerian dynamics and the approximate
equations for wave envelopes �generalizations of the nonlin-
ear Schrodinger equation �NLSE�� suggested in Refs.
�25–27�. It should be emphasized that our method makes
possible to compute profiles of individual abnormal waves
for �2
1, while in Refs. �16,17� only waves with smooth
envelopes in crossing sea states for �=� /2 were studied,
however for arbitrary �.

The main results of this work are the following. If
��arctan�1 /�2�, then the nonlinearity is defocusing along
the stripes and it is focusing across them. The situation is
opposite at nearly perpendicular k0 and �k. Accordingly,
rogue waves, occurring at the sea surface, are different in
these two cases. In the first case, freak waves look as frag-
ments of structures which are similar to the solitonic solu-
tions of a focusing NLSE for a wave envelope. Such ex-

PHYSICAL REVIEW E 79, 065304�R� �2009�

RAPID COMMUNICATIONS

1539-3755/2009/79�6�/065304�4� ©2009 The American Physical Society065304-1

http://dx.doi.org/10.1103/PhysRevE.79.065304


tremely narrow and steep solitons are in essence rows of
alternating oblique crests and troughs �see Fig. 1�a��. When
perturbed by a weak two-dimensional �2D� random field, the
oblique solitons can exist for many wave periods almost un-
changed, but later they transform to zigzag structures similar
to that described in Ref. �9� �see Figs. 1 and 2, for example�.
It should be noted that in the limit �→0 such extreme ob-

lique solitons coincide with the recently discovered 1D giant
breathers �10�. Thus, the fundamental role of these coherent
structures in the dynamics of water waves is confirmed. At
nearly perpendicular k0 and �k, another kind of coherent
structures comes into play, similar to the dark solitons of a
defocusing NLSE. Dark solitons develop at the interference
minima and they transversally separate wave groups sub-
jected to the longitudinal modulational instability. Freak
waves in this case have nearly 1D profiles, but they are
bounded in the transversal direction by two dark solitons.

To understand better numerical results, it is useful to have
in mind a qualitative model describing weakly nonlinear wa-
ter waves in terms of a complex wave amplitude A�x1 ,x2 , t�,
which determines the free surface elevation as follows:

Y�x1,x2,t� � Re�A�x1,x2,t�exp�ik0x1 − i0t�� , �1�

where �x1 ,x2� are horizontal coordinates, with x1 axis along
k0, 0= �gk0�1/2 is frequency of the carrier wave, and g is the
gravity acceleration. The function A is known to approxi-
mately obey a 2D NLSE �18�,
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The oblique stripes roughly correspond to the following 1D
reductions in Eq. �2�:

A = k0
−1���,��, � = k0��x1 − Vgrt�cos � + x2 sin �� , �3�

where �=0t and Vgr= �0 /2k0� is the group velocity. As a
result, we have a 1D NLSE describing the transversal dy-
namics of idealized, infinitely long wave stripes,

i�� =
1

4
��1/2�cos2 � − sin2 ����� +

1

2
���2� . �4�

Depending on the sign of the dispersion coefficient
D���= ��1 /2�cos2 �−sin2 ��, this is either focusing equation
or defocusing one, and the dynamics is quite different in
each case. For example, in the focusing case �when D�0�,
the nonlinearity can become saturated with the so-called
�bright� solitons,

�bs =
s

cosh��s/�D��� − �0��
exp�− i�s2/4 + i�0� , �5�

where s is a wave steepness and �0 and �0 are arbitrary
constants. These solutions describe infinitely long wave
ridges consisting of alternating oblique crests and troughs.
Physical conditions of applicability of the above formula im-
ply s�0.1 and s /�D
1, but actually these solutions have
been found to continue qualitatively to considerably higher
values s�0.27. We specially studied a long-time behavior of
such extreme solitons both for �=0 �the giant breathers at 2D
surface� and for ��0. It is one of the main results of the
present work that in two dimensions extreme solitons can
exist for a long time before transformation into zigzag struc-
tures. An example of evolution of a perturbed high-amplitude
oblique soliton is presented in Figs. 1 and 2 for
�0�100 m, ��arctan�1 /5�, and s�0.22.

In the defocusing case �when D�0�, the so-called dark
solitons are possible,

FIG. 1. �Color online� Evolution of a perturbed high-amplitude
oblique soliton into a zigzag structure: �a� surface elevation, in
meters, at t=17 min and 26.5 s and �b� surface elevation at t
=23 min and 35.9 s.
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FIG. 2. �Color online� Global maximum and minimum elevation
of the oblique soliton vs time.
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�ds = s tanh��s/�− D��� − �0��exp�− i�s2/2 + i�0� , �6�

which separate two domains of opposite amplitude.
In view of the above, it is clear that since the effective

dispersion coefficient D��� changes the sign at ��

=arctan�1 /�2�, in the full 2D dynamics of random wave
fields there should be two substantially different regimes,
one regime at ���� and another at � close to � /2. This
hypothesis is confirmed in general by numerical experiments
reported here.

The computations were performed in the dimensionless
square domain 2��2� with periodic boundary conditions
along horizontal coordinates x and q �see Refs. �23,24� for
details�. Thus, all the discrete Fourier modes correspond to
dimensionless integer wave vectors k= �k ,m�. The vector k0
�and x1 axis� was generally taken slightly different from the
direction of x axis in order to take into account the effect of
gradual reorientation of wave crests along the oblique stripes
�see Ref. �9��. Final results were rescaled to give a conve-
nient for presentation value �0�100 m, which is quite typi-
cal in natural sea conditions. The corresponding wave period
is T0= �2��0 /g�1/2�8 s. Two small sets of typical numerical

experiments are presented, designated as A1–A4 and
B1–B3. Within each set, at t=0 the normal Fourier modes of
the wave field were taken in the form akm�0�
=cF�k ,m�exp�i�km�, with a positive function F�k ,m� having
two nearly Gaussian maxima at k0��k /2 and with quasir-
andom initial phases �km different for A and for B. In each
experiment a choice of the coefficient c gave different values
of the total energy EA1 ,EA2 ,EA3 ,EA4 and EB1 ,EB2 ,EB3. In set
A we took k0= �40.0,−2.5� and �k= �7.0,2.0�, so a case
���� was simulated, while in set B it was a crossing sea
state with �=� /2: k0��k /2= �39.5, �3.5�.

For set A, some results are presented in Figs. 3 and 4. The
modulational instability acts in this case from the very be-
ginning, and it needs a short time 5–8 min to produce freak
waves in the initially most tall wave groups. The two neigh-
boring big waves in Fig. 4 look as a fragment of an oblique
soliton �compare to Fig. 1�a��. The computations A4 and A3
were terminated at the moments when the freak waves broke,
while in experiments A2 and A1 the waves remained smooth,
so at later times nearly stationary long oblique solitons were
observed �not shown�.

Results of experiments B1–B3 �see Figs. 5–7� are more
intriguing since there were two stages in the evolution of the
wave field before rogue waves arose. In the first stage, for
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FIG. 3. �Color online� Maximum elevation of the free surface vs
time in the numerical experiments A1–A4.

FIG. 4. �Color online� Experiment A3, t=6 min and 2.5 s: the
two big waves are at x�1.6 km, q��3.7, . . . ,3.9� km and at
x�1.5 km, q��0.1, . . . ,0.3� km.
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FIG. 5. �Color online� Maximum elevation of the free surface in
the numerical experiments B1–B3.

FIG. 6. �Color online� Experiment B2, t=18 min 43.8 s: the
rogue wave is at x�1.2 km and q��1.0, . . . ,1.3� km.
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4–7 min after the beginning, it was the formation of dark
solitons along interference minima, which the process was
accompanied by substantial decrease in wave amplitude
along interference maxima. At the end of this stage, the free
surface has been divided by dark solitons into domains of
nearly 1D dynamics. In the second stage, adjacent domains
interact in a complicated manner, and in one of them the
amplitude increases, resulting in fast development of the lon-
gitudinal modulational instability. As the result, a single
rogue wave grows, which is squeezed from the lateral sides
between two dark solitons, as shown in Fig. 6. The rogue
wave is “breathing,” with time-alternating tall crest and deep
trough, and it approximately repeats the profile after 2T0 �see
Fig. 7�. After a dozen of the oscillations, the big wave
spreads in the transversal direction and disappears �not
shown�.

As results A and B are compared, it becomes clear that the
unusual properties of the abnormal waves in weakly crossing
seas are more prominent when the interference stripes are
nearly perpendicular to the wave crests.
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FIG. 7. �Color online� �a� Profiles of the freak wave from Fig. 6;
�b� 8 s later: “a hole in the sea;” and �c� 16 s later: the big wave has
risen again.
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